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1 Introduction

The use ofNonlinear Load (NLL) and high penetration ofRenewable Energy Sources
(RES) with the grid produce the harmonics [1, 2]. The power electronic elements
are the main sources of the harmonics which degrade the quality of power received
by the end-users. The RES which is associated with the system at the distribution
level is called Distributed Generation (DG) [3–5]. In the distribution networks, it
is recommended to use the UPQC for harmonic compensation and reactive power
compensation [6]. The UPQC can be installed on the grid side or NLL side or DG
side. Various locations of UPQC on the integrated system are shown in Fig. 1. The
UPQC is placed at the grid side and the NLL/RES is integrated with the grid through
the special transformer. It can be observed fromFig. 1, the load current harmonicswill
flow through the special transformer which causes serious power quality problems
such as extra core losses, copper losses, vibrations, and temperature rises [7–9].
For this position of UPQC, it is possible to bypass the harmonics from the grid,
but the effect on the special transformer is unavoidable. In Fig. 2, the UPQC is
placed on the DG side. In this configuration also, the special transformer is affected
by the harmonics [10–12]. When the UPQC in this configuration, if operated in
parallel with converter-based DG systems, it loses its stability [13–15]. The UPQC
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Fig. 1 Grid-side UPQC arrangement
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Fig. 2 Load-side UPQC arrangement

can perform simultaneous operations with series and Shunt Active Power Filter
(SAPF). VariousUPQCadvancements are presented in the literaturewith the reduced
number of switches, improved DC link voltage, and better power quality production.
The inductive Power Filter (IPF) proposed in the literature mitigates the harmonic
effect on the special transformer and also counters the source of harmonics in the
system [16–20]. The IPF approach uses a set of single-tuned filters. The performance
of these passive filters is limited. The strength of IPF in terms of voltage regulation
and harmonic compensation is better.

This paper presents a new inductive filter based hybrid UPQC for the elimination
of voltage and current harmonics in the integrated system as presented in Fig. 3.
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Fig. 3 Proposed UPQC arrangement

This hybrid UPQC integrates the benefits of IPF and hybrid SAPF (HSAPF). This
integration will counter the effect on special transformers due to harmonics. The
remainingpaper is structured as follows.The remainingpaper is structured as follows.
Section II presents the test system proposed, Section III describes the proposed
controlmechanism, Section IV describes the proposed approach, SectionVdescribes
the results, and the conclusion is drawn in VI Section.

2 Inductive Hybrid UPQC Structure

The basic inductive hybrid UPQC is depicted in Fig. 4. It consists of a UPQC with
HSAPF and series Active Power Filter (APF), Inductive Filtering Transformer (IFT),
load with medium power ratings, and DG units. The HSAPF and series APF are
connected back to back and designed based on the neutral point clamped converter
principle [21]. The passive filer of HSAPF is a double resonant passive filter that
has two resonant frequencies which can sustain more voltages. The passive filter of
series APF is a low-pass LCR filter. The IFT is a three-winding transformer with
YYD windings. The primary winding of IFT is connected to the utility grid through
the series transformer. The secondary winding of IFT is connected to the DG units
or medium power application loads [22]. The third filter winding of IFT is connected
to the HSAPF. The inductive filtering is achieved with the IFT and HSAPF [23–25].
When the harmonic magnetic balance is achieved between the secondary winding
andfilteringwinding, the harmonics in the secondary are compensated by the filtering
winding which causes the reduction of harmonics in the primary of IFT. The benefit
of this configuration is it compensates for the harmonics well on the transformer and
supplies the load reactive power demand.
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Fig. 4 Test system with proposed inductive hybrid UPQC

3 Proposed Control Mechanism

3.1 Equivalent Circuit Model

The circuit equivalent model of the proposed test approach is shown in Fig. 5. It is
assumed that the DG is assumed as non-sinusoidal current source with impedance
parallel. The HSAPF is treated as non-sinusoidal source current type in shunt with
impedance. The series filter is treated as the controllable voltage source. The equiva-
lent impedance of three windings PW, SW, and FW are Z1, Z2, and Z3, respectively.
The hybridUPQC is installed between grid andDGwith threewindings, the proposed
series transformer and IFT are step-down transformers.

3.2 Current Harmonic Control

This section describes the detailed analysis of the harmonic current compensation
mechanism. The function of HSAPF is to compensate for the current harmonics and
to make the load currents free from harmonics [26, 27]. From the magnetic balance
principle of the transformer, the currents in three winding of transformer are (1)
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Fig. 5 Equivalent circuit of proposed UPQC arrangement

⎧
⎨

⎩

Ni1isa + Ni2i1a + Ni3ia f = 0
Ni1isb + Ni2i1b + Ni3ib f = 0
Ni1isc + Ni2i1c + Ni3ic f = 0

(1)

Voltage signal equations of multiple winding based transformer are (2)

⎧
⎪⎨

⎪⎩

Van1 − Ni1
Ni3

Vabf = i sa Z1 − Ni1
Ni3

ia f Z3

Vbn1 − Ni1
Ni3

Vbcf = i sb Z1 − Ni1
Ni3

ib f Z3

Vcn1 − Ni1
Ni3

Vca f = i sc Z1 − Ni1
Ni3

ic f Z3

(2)

As per the Kirchhoff current law, the current equations in filter winding are
described as (3)

⎧
⎨

⎩

Vabf = izb Zob − iza Zoa = (izb − iza)Zo

Vbcf = izc Zoc − izb Zob = (izc − izb)Zo

Vca f = iza Zoa − izc Zoc = (iza − izc)Zo

(3)

The voltage equations of filter winding are described as (4)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

isa + isb + isc = 0
i1a + i1b + i1c = 0
ia f + ib f + i f c = 0
ia f = ic f + ica
ib f = ia f + icb
ic f = ib f + icc

(4)

From Eqs. (1)–(4), the grid currents can be obtained as (5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

isa=Van1− Ni1
Ni3

(ira−irb)Z0− Ni1Ni2
N2
i3

(Z3+3Z0)i1a

Z1+ N2
i1

N2
i3
(Z3+3Z0)

isb=Vbn1− Ni1
Ni3

(irb−irc)Z0− Ni1Ni2
N2
i3

(Z3+3Z0)i1b

Z1+ N2
i1

N2
i3
(Z3+3Z0)

isc=Vcn1− Ni1
Ni3

(irc−ira)Z0− Ni1Ni2
N2
i3

(Z3+3Z0)i1c

Z1+ N2
i1

N2
i3
(Z3+3Z0)

(5)

From Eq. (5), the grid currents are majorly affected by currents of HSAPF,
load currents, primary voltages, and grid currents. Assume the primary voltages
are completely compensated and the current has no harmonics, then the HSAPF
reference currents should meet Eq. (6)

⎧
⎪⎨

⎪⎩

ira = Ni2
Ni3

(Z3+3Z0)

3Z0
(i1c − i1a)

irb = Ni2
Ni3

(Z3+3Z0)

3Z0
(i1a − i1b)

irc = Ni2
Ni3

(Z3+3Z0)

3Z0
(i1c − i1c)

(6)

To remove the effect of Z3 on filter performance, this impedance is diagnosed in
such a way it is close to zero. Hence, the reference currents are simplified as (7)

⎧
⎪⎨

⎪⎩

ira = Ni2
Ni3

(i1c − i1a)

irb = Ni2
Ni3

(i1a − i1b)

irc = Ni2
Ni3

(i1c − i1c)

(7)

3.3 Voltage Harmonic Control

The series APF controls the voltages and is responsible for harmonic less sinusoidal
voltages with suitable amplitudes. By controlling the secondary winding voltages of
the IFT, the NLL voltages are controlled. Under no-load situations, the open circuit
secondary voltages are presented as (8)
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⎧
⎪⎨

⎪⎩

Va0 = Ni1
Ni2

Van1

Vb0 = Ni1
Ni2

Vbn1

Vc0 = Ni1
Ni2

Vcn1

(8)

As per the Faraday law and Kirchhoff’s voltage law, the primary voltages are
written as (9)

⎧
⎪⎨

⎪⎩

Van1 = Vsa + N1
N2
Vca

Vbn1 = Vsb + N1
N2
Vcb

Vcn1 = Vsc + N1
N2
Vcc

(9)

From (8) and (9), if the primary voltages deviate from the normal values, the
reference voltages are written as (10)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Vcra =
(

Ni1
Ni2

V ∗
La − Vsa

)
N2
N1

Vcrb =
(

Ni1
Ni2

V Lb∗ − Vsb

)
N2
N1

Vcrc =
(

Ni1
Ni2

V ∗
Lc − Vsc

)
N2
N1

(10)

4 Proposed Controller

The suggested hybrid UPQC is controlled with a synchronous reference controller.
Hear the HSAPF and series filter are independently controlled. The HSAPF compen-
sates for the current harmonics and regulates theDC link voltage. The series regulator
compensates for the load voltages.

4.1 Pre-filtering with SGDFT-Based PLL

Both series and shunt filters must be in association with utility. The conventional
PLL provides weak achievement under nonideal voltage signals, hence in this paper,
a new pre-filter approach is introduced which uses SGDFT. The basic controller
structure of SGDFT filter based PLL is depicted in Fig. 6. It has three main parts
they are positive sequence components separation, voltage normalization, and SRF
PLL. The voltage normalization technique is provided to eliminate the achievement
of changing input signals on synchronous reference PLL. The realization of SGDFT-
basedfilter is shown in Fig. 7. This SGDFTbasedfilter removes the serious deviations
in voltages efficiently as the PI controller is tuned properly.



372 Ch. Rami Reddy et al.

Fig. 6 SGDFT-based SRF controller

Fig. 7 Arrangement of SGDFT filter

4.2 Control Scheme for HSAPF

The proposed controller for HSAPF is shown in Fig. 8. It has six majorly parts. It
has Carrier-Based PWM (CBPWM), reference voltage calculation, link DC voltage
controller, current controller, voltage control, and voltage balancer. The base current
is obtained with the load ampere signal by using SGDFT. The reference DC link

Fig. 8 HSAPF controller
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Fig. 9 Design of CBPWM

voltage is provided stationary using a PI controller. PR controller is used to extract
the reference current. The voltage feed-forward controller eliminates the disturbances
in the voltage. The design of detailed information of CBPWM is depicted in Fig. 9.

4.3 Series Active Power Filter Controller

The series active filter controller is shown in Fig. 10. It has a major reference
voltage calculator, load voltage controller, current controller, and CBPWM. The
reference voltages are obtained from the grid voltages and load voltages. The current
feed-forward controller removes the current harmonics and this controller is not
responsible for the control of DC-link voltage.

Fig. 10 Series active power filter controller
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5 Simulation Results and Discussion

The performance of the proposed approach is achieved on MATLAB/Simulink plat-
form. The hybrid UPQC is connected between grid and load. Power electronic
controller is used as nonlinear load with twenty degrees triggering angle. The simu-
lation results of grid and load voltages before and after compensation are depicted
in Figs. 11 and 12. The compensation currents are depicted in Fig. 13. Because of
the application of the proposed UPQC, the THD of the grid is reduced from 11.65%
to 2.24% which is recorded in Figs. 18 and 20. The grid current, load current, and
compensation currents with UPQC are depicted in Figs. 14, 15, and 16, respectively.
The THD of grid current is decreased from 30.97% to 1.53%, respectively, because
of the application of the proposed UPQC (Figs. 17, 19 and 21).

Fig. 11 Grid voltage before compensation

Fig. 12 Load voltage after compensation
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Fig. 13 Compensating voltage

Fig. 14 Load current before compensation with UPQC

Fig. 15 Load current after compensation with UPQC

6 Conclusion

This article proposes a new advanced hybrid UPQC for harmonic compensation of
renewable energy applications. The proposed UPQC integrates IFT with HSAPF,
which eliminates the harmonics in the system compared to the conventional UPQC.
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Fig. 16 Compensation current

Fig. 17 DC split link voltages

The simulation results indicate that the proposed UPQC reduces the voltage THD
from 11.65% to 2.24% and current THD from 30.97% to 1.53%, respectively. It
makes the proposed control system is very efficient in the control of load current
harmonics.
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Fig. 18 Grid voltage THD before compensation

Fig. 19 Grid current THD before compensation
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Fig. 20 Load voltage THD after compensation with proposed UPQC

Fig. 21 Load current THD after compensation with proposed UPQC
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